4 research outputs found

    Information Theory Perspective on Network Robustness

    Full text link
    A crucial challenge in network theory is the study of the robustness of a network after facing a sequence of failures. In this work, we propose a dynamical definition of network's robustness based on Information Theory, that considers measurements of the structural changes caused by failures of the network's components. Failures are defined here, as a temporal process defined in a sequence. The robustness of the network is then evaluated by measuring dissimilarities between topologies after each time step of the sequence, providing a dynamical information about the topological damage. We thoroughly analyze the efficiency of the method in capturing small perturbations by considering both, the degree and distance distributions. We found the network's distance distribution more consistent in capturing network structural deviations, as better reflects the consequences of the failures. Theoretical examples and real networks are used to study the performance of this methodology.Comment: 5 pages, 2 figures, submitte

    Quantification of network structural dissimilarities

    Get PDF
    Identifying and quantifying dissimilarities among graphs is a fundamental and challenging problem of practical importance in many fields of science. Current methods of network comparison are limited to extract only partial information or are computationally very demanding. Here we propose an efficient and precise measure for network comparison, which is based on quantifying differences among distance probability distributions extracted from the networks. Extensive experiments on synthetic and real-world networks show that this measure returns non-zero values only when the graphs are non-isomorphic. Most importantly, the measure proposed here can identify and quantify structural topological differences that have a practical impact on the information flow through the network, such as the presence or absence of critical links that connect or disconnect connected components

    Quantification of network structural dissimilarities

    No full text
    Identifying and quantifying dissimilarities among graphs is a fundamental and challenging problem of practical importance in many fields of science. Current methods of network comparison are limited to extract only partial information or are computationally very demanding. Here we propose an efficient and precise measure for network comparison, which is based on quantifying differences among distance probability distributions extracted from the networks. Extensive experiments on synthetic and real-world networks show that this measure returns non-zero values only when the graphs are non-isomorphic. Most importantly, the measure proposed here can identify and quantify structural topological differences that have a practical impact on the information flow through the network, such as the presence or absence of critical links that connect or disconnect connected components
    corecore